skip to main content


Search for: All records

Creators/Authors contains: "Molino, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of BN-incorporated borafluorenate heterocycles, bis(borafluorene-phosphinimine)s (11–15), have been formed via intramolecular Staudinger-type reactions. The reactions were promoted by light or heat using monodentate phosphine-stabilized 9-azido-9-borafluorenes (R3P-BF-N3; 6–10) and involve the release of dinitrogen (N2), migration of phosphine from boron to nitrogen, and oxidation of the phosphorus center (PIII to PV). Density functional theory (DFT) calculations provide mechanistic insight into the formation of these compounds. Compounds 11–15 are blue emissive in the solution and solid states with absolute quantum yields (ΦF) ranging from 12 to 68%. 
    more » « less
  2. Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2–3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites. 
    more » « less
  3. Abstract

    The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (1) affords the first examples of dianionic 10‐membered bora‐crown ethers (25), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4, which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of25. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.

     
    more » « less
  4. Abstract

    The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (1) affords the first examples of dianionic 10‐membered bora‐crown ethers (25), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4, which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of25. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.

     
    more » « less